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CHAPTER

TWELVE
APPROXIMATION THEORY

12-1 THE APPROXIMATION PROBLEM

In all previous chapters, it was tacitly assumed that a realizable network function
(driving-point or transfer) was given at the outset of the design procedure,
presumably as part of the specifications. In practice, of course, this is almost never
the case; normally, the desired circuit performance is prescribed either in the form
of a chart or a graph or, more often, as a set of inequalities. A typical sct of
specifications may be in the form given in the following example.

Example 12-1 Design a doubly terminated reactance two-port with both terminations
equal to SO Q and with the following restrictions on the transducer loss a:

@ :loss in dB < 1dB for 0=<f< 18 MHz

- oz 50 dB for TMHz<f<®™
G: gainin dB

G=-a The solution of this problem will be discussed later in the chapter. Here, we
merely note that the specified circuit is evidently intended to pass low frequencies
(below 1.8 MHz) essentially unattenuated and suppress high frequencies (above
7 MHz) strongly.
Such frequency-selective two-ports are called filters. Depending on the
frequency bands passed (or suppressed), they can be classified as low-pass, or
high-pass, bandpass, or bandstop, etc, filters. The circuit specified above is clearly
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a low-pass filter. The frequency region in which the loss must be low (0 </ <
1.8 MHz in the above example) is called the passband of the filter; the high-loss
region {7 MHz < f < oo in the example) is called the stopband. The frequency
limits of these bands are called passband limit and stopband limit, respectively. In
the above example, the passband limit is f, = 1.8 MHz, and the stopband limit is
f.=7 MHz.

The branch of circuit theory which deals with finding a realizable network
function meeting such practical specifications is called approximation theory. Its
fundamentals will be discussed in this chapter.

It will be demonstrated next that the approximation problem is especially

2
« dB a =10log,,(I+| K~ |)
3
| K* | : characteristic function
50 K(s) > K(jo)
|
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Figure 12-1 Loss and |K|* responses for a low-pass filter.
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conveniently solved in terms of the transducer function H{s) and the characteristic
function K(s) [introduced in Chap. 6 via Egs. (6-5) and (6-21), respectively].
Specifically, if only the behavior of the transducer loss a{w) is specified, it is
advantageous to find | K{jw) 2. if the phase or time response is also prescribed,
H(s) should be calculated. The reason for these preferences is that, by Egs. (6-8)
and (6-25), the transducer loss for s = jw is

a=101log |H|* =10 log (|K|* + 1) (12-1)

Consequently, whenever o ~ 0, |K|* ~ 0; and whenever « — o0, |K|* = . Si-
milarly, if x(w) is increasing (decreasing), |K(jw)|* must also be increasing
(decreasing). In conclusion, the loss a(w) and the squared modulus of K(jw) vary
exactly the same way with frequency, except that there is of course a difference
between their actual numerical values. This point is illustrated in Fig. 12-1, which
compares the two responses for the low-pass filter specified in the above example.
Obviously, neither curve is drawn to a true scale.

Another advantage of using | K |* for approximating a prescribed filter loss
response is based on the fact (to be demonstrated) that it is efficient to place all
zeros of the a(w) function in those frequency bands where « must be small, i¢., in
the passbands, and, similarly, that all poles of a{w) should be in the frequency
bands of specified high attenuation, ie., in the stopbands. By Eq. (12-1), the zeros
and poles of | K |* are located at the same frequencies as those of «. Hence, the
approximate locations of the zeros and poles of |K|* are usually known in
advance, and these poles and zeros are normally all on the jw axis of the s plane.
By contrast, the zeros of H{s) are in the insidc of the left half s-plane. Finding the
zeros of H(s) is therefore a two-dimensional problem, while the search for those of
K(s) is usually restricted to the jo axis, ie, 1s in one dimension only.

Example 12-2 To illustrate how easily a filter-type response can be obtained by properly
choosing the location of the zeros and poles of | K |?, assume that we wish « to be small for
0 <@ < 1 and as large as possible for 2 < w < 4. Let K(s) be of degree 4; then in general

K(s) = ¢ 505 = s2)ls = 5)ls = s4)

== p)(s = pa)ls — palis — pe)

Since K(s) is a real rational function, the s, and p; must occur in conjugate pairs. Further-
more, we anticipate that distributing the zeros s; along the jw axis in the 0 < w < I range,
the values of | K| and « will be small in that range. Finally, placing the poles p; on the jo
axis in the 2 < w < 4 range should make |K| and hence also a large in that frequency
range. Hence, choosing the zeros and poles arbitrarily at the plausible locations given by

sy =53=j03  s;=s8=j07 p=pr=j25 ps=pi=j35
and selecting C = 100 gives the resulting K(jw) in the form

w? =03 w? - 0.7%)
w? — 2.5%)(w? — 3.5%)

K(jw) = 1002
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I :H(s):l ﬁ_Eﬁi_
5 2\ R, V,(s)

21
Characteristic function:

K(s)= p,(s)H(s)

s> jo
2 f)m'w ren
| H = e
])nu.’
i K IE_ P” i = ])max ,_f_)”'
Rmi I)U!n‘
|H|*< K |* +1

Gain(dB) = G(f)
—a=-10log| H |’

For stability, the zeros of H(s) (natural modes) must be inside the LHP of the s plane (including zero at

s —> ) - B
Feloltizpl)

H(s)H(=s)=K(s)K(—s)+1 ‘Fedﬁ@eﬂef équation

H(s) : real rational function of s — ~
55,08

K(s) : real rational function of s

P, (s) :realrational function of s — —s,,,55,
2
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Figure 12-2 Loss response for a filter with jw-axis zeros and poles.

The loss response «{w) thus obtained is shown in Fig. 12-2. It confirms the effectiveness of
distributing the zeros and poles in the passband and stopband, respectively: the passband
loss is small (less than 0.1 dB over 80 percent of the passband) and the stopband loss is

large.

The situation changes, however, if we are interested in the phase or delay
response of our circuit. By Eq. (6-7), the phase lag  between the output and input
voltages is simply the phase of the complex function H{jw):

, Im H(jw)
IPTIESS Rttt od 122 ¥,
M= e (122) - o
Hence, the phase as well as the phase delay
Blw) peatl
T;ah(m) =T (12-3) - B=48,
W B
and the group delay
dflw)
= 12-4
T;(co) dw ( )

are closely related to the transducer function H(s)and are easily expressed from it.
There is no direct connection bétween these quantities and K(s). Hence, if f{w),
T(w), or T(w) is specified, it is more expedient to calculate in terms of H(s).
Similarly, the time response of a two-port is given by
1 (R Eg(s)

vy(r) = L7 [Va(s)] = 5 .Ej; g lﬁ(‘j} (12-5)
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A, = O

Figure 12-3 Brick-wall low-pass
0 w, =, response.

where %! denotes the inverse Laplace transform and Eq. (6-5) was utilized.
There is no comparable relation in terms of K(s). Therefore, only H(s) is useful for
satisfying time-response specifications.

In most design problems, the desired ideal characteristics cannot be exactly
achieved. For example, an ideal low-pass filter would have to exhibit the infinitely
sharp “brick-wall” loss response illustrated in Fig. 12-3. Such a characteristic is
not realizable with any circuit built from a finite number of elements (refer to
Probs. 12-1 and 12-2). Hence, the desired loss function must be approximated by
functions which are realizable. Obviously, we want to achieve the best possible
agreement between the desired and the actual performance. Two widely used
procedures for measuring this agreement are:

(a) To compare the two functions and their first n — 1 derivatives at one single
value of the independent variable.t

(b) Or to evaluate the maximum deviation between the two functions in a range
of the independent variable.

Criterion a requires therefore that

max flat: Fope®) = F o)
a- matches values and derivatives %ﬂj - ‘LF:::
do ~ dw
b- minimizes max error in band
P F e W F (12-6)
c- minimizes _[e”(f)cg’f (least - pth) do? ~ do?

dﬂ_ lFspcc - dﬂ7 1P‘:ml

do" ! depy" ™!
for some = w,. Here, F, (w) is the specified response while F (o) is the

actual one. Obviously, F,.(w) must have n free parameters, e.g., coefficients, or

+ Usually the frequency w is the independent variable.

Approximation Theory 140
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zeros and poles if F_, is a rational function of w, in order to satisfy the n equations
in (12-6). If F,,, does satisfy Eq. (12-6), the error between F, . and F,, is called
maximally flat and F,, is a maximally flat approximation of F,..

Criterion b suggests the maximum absolute error in the w, < @ < w, range:

E= max [F[(o)—F,(0)] (12-7)

HE WL Wy

be minimized. Assuming again that F_ has n adjustable parameters, this will
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Figore 12-4 (a) Maximally flat approximation: {b) equal-ripple approximation.

Selectable parameters p,, p,....p, ripplesize: n+l equal max errors
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usually happen if the error F, . (w) — F,.(w) has n + 1 equal alternating extrema
in the frequency range between w, and , . Since such error is called equal-ripple,
the approximation itself will be called equal-ripple or min-max approximation.
Responses representing maximally flat and equal-ripple approximations are il-
lustrated in Fig. 12-4a and b, respectively.

In the following, we shall obtain maximally flat or equal-ripple approxima-
tions to some idealized responses, such as the brick-wall response illustrated in
Fig. 12-3. From the discussions of Chap. 6 we know that the following informa-
tion is required for the circuit realization process:

1. The degree n of the circuit, ie., the number of its natural frequencies
2. The characteristic function K(s) and/or the transducer factor H(s)

K(s) and H(s) can be described by the polynomials E(s), F(s), and P(s) or by the
critical frequencies, ie., natural modes, loss poles (transmission zeros), and zero-
loss points (reflection zeros) of the circuit.

The next sections will describe the calculation of these functions and par-
ameters for some simple but important responses. Initially, some approximations
to the ideal low-pass response of Fig. 12-3 will be discussed. Then it will be shown
how transformation of the frequency variable can be used to extend these approxi-
mations to the design of high-pass, bandpass, and bandstop filters. After that, the
maximally flat approximation of a linear phase, i.e., constant group delay, will be
described for low-pass filters. Finally, some simple solutions of the approximation
problem for bandpass filters will be discussed.

12-2 BUTTERWORTH APPROXIMATION

One of the simplest techniques for finding a useful realizable function which
simulates the brick-wall loss function of Fig. 12-3 is to carry out a maximally flat
approximation in the vicinity of w, = 0, where 2 and all its derivatives vanish.
Choosing a polynomial rather than rational K(s), the function

| K{jw) | = K(jw)K(—jw) (12-8)
will also be a polynomial in w?:
IK(]U))IE = c‘rl(")z” F (‘.rr" lwz(n—“ i C{) (12'9)

Next. observe that « and | K |* satisfy
x=101log (1+ |K[?)
do 10 log e d|KJ?
— b odl] I8 12-10
d@?) " 1+ |K|? do?) (12-10)
Pa  Wpes 1 [dtszr K[|
d@? 1+ |KPPl 1+ |K|? |d(e?)

d(w?)? |
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| K(jo) = [Re(K(jo)] +[m(K(jo)]
= (Re(K()) |, p > + {IM(K ()|, 0}’

K(s)=a,s"+a,_s"" +..+a,

K(s)y=a,s"
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From Eq. (12-10), it follows that whenever the conditions
|K|*=0
dK[®
d{w?)
CIKE
d(w2)2 o

..........

(12-11)

hold for some @ = wy , the same conditions will be valid for a, da/d(w?), d*a/d(w?)?,
etc., and vice versa. Hence, the maximally flat approximation of the brick-wall
response of Fig. 12-3 requires that | K |? satisfy relations (12-11).

Applying, accordingly, the equations of (12-11) to the function of Eq. (12-9)
one by one, we obtain the conditions

COICI=C2="'C5M1 :0 (12“12)

The nth derivative of |K|* can only be matched to zero by setting C, equal to
zero. This, however, would result in | K |? =0 and hence a =0 for all @. Such an
allpass network cannot be regarded as a useful approximation of the characteristic
of Fig. 12-3. Hence, we keep C, > 01 and obtain, for s = jw,

|K|?=C,0*  K(s)= £./C,5" (12-13)
This means that by the Feldtkeller equation (6-29)
H(s)H(—s) = K(s)K(—=s)+ 1 = C (—1)s*" + 1 (12-14)

Therefore the zeros of H(s)H(—s), that is, the natural modes and their mirror
images with respect to the origin, satisfy
pinin=1+2k)
st =(-1lC; =0 yo k=12 ....2n0 (12-15)

or sk - C; IIZHejK(ﬂ-I+2k}.[2n k = 1, 2’ _— 2?’1 (12-16)

n

Thus, the s, lie on a circle in the s plane, with a radius of C, */?" at angles
n(n — 1 + 2k)/2n. The natural modes are, of course, those s, which lie in the LHP,
that is, s, $5, ..., 5,. Figure 12-5 illustrates the n = 4 case.

The approximation represented by Eqgs. (12-13) to (12-16) is called (after its
first proponent) the Butterworth approximation. Filters realized using this process
are called Butterworth filters.

At this stage, we see from Eq. (12-13) that all reflection zeros are at s = 0 and
that all loss poles ar¢ at s — oo. We also see from Eq. (12-16) that the natural
modes are at

5, = C; Vanginn=1420020 ) 9y (12-17)

+ C, < 0 would make |K|* <0, which is mathematically meaningless.
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K |*’=C, +C,0> +..+C 0"

In general: | K |* vs @7 is simple to find. Then:
For s = j@ :
1K 2, +1= K(jo)K(-jo)+1= K(s)K(=s)+1

= H ['= H(s)H(-s)

I/cmf (S) o Cons't
Viu(s) — H(s)

zeros of H(s) = natural modes.
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Figure 12-5 Natural modes and their mirror images for a Butterworth filter of degree n = 4.

We have yet to find C, and the necessary degree n of the network. These par-
ameters will depend on the actual specifications for the network. As mentioned
earlier, they arc usually of the form

a<e, for0<f<f,

2.18
aza,  forf <f< oo (12-18)

where a,, a,, f,, and f, are prescribed. These conditions can be illustrated graph-
ically, as shown in Fig. 12-6. In order to meet the specifications, the a(w) curve
must stay below the shaded barrier for 0 < f<f, and above the barrier for

fisf< .
Consider now the Butterworth function given in (12-13). By Eq. (12-1),
x{w) = 10 log (1 + |K[*) = 10 log (1 + C,»"") (12-19)
x n
1 ) H(s)=K []ts-s)
:’ i=l
. I H(s)=—2 -0
A oul
2 K(s)=C/s"
é = H(s) =K (s—5)(s—5,)....(s—5,)
a 7
a L L
» / % . Figure 12-6 Low-pass filter speci-
5L L *f fcations.
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o, dB

3dB

Figure 12-7 Loss responses of Butterworth filters for r=1,2, 3, and 4 and C, = 1.

The loss response given by Eq. (12-19) is illustrated in Fig. 12-7 for C, = | and for
various low values of n. Clearly, the greater n is, the lower the loss in the passband
(if we assume f, < 1) and the higher in the stopband (for f, > 1). Because of the
monotonic shape of the a(w) curve, if the inequalities (12-18) are satisfied at f, and
at f,, they must be satisfied for all £ Hence, assuring

Wf)<a, af)za (12-20)

is sufficient to guarantee that the conditions in Eq. (12-18) are met. Using
Egs. (12-19) and (12-20) gives
a=10log(1+C,0™)

5 Zn 10&1’“0 - E ~2n C"
@, =10log(1+C,@,™) (2nf,)*" < e )" < 10°1° _ (12-21)
a, :10}0g(]+(f'”(qf"§ L . o o '
: ince both sides in both mequalities are positive, we can multiply them together to
obtain the new inequality
f Zn 10«,[10 |
(7)< s e
At this stage, it is expedient to introduce the selectivity parameter
k& Jr <1 (12-23)
L
and the discrimination parameter
10819 — 1 0.23a
kl & \/io«,’lo -1 ~ \{Oa,lzop <1 (12_24)

As Fig. 12-6 illustrates, the larger k is, the more selective, ie., steeper, the
response. Also, the smaller k, is, the greater the difference between passband and
stopband loss.
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Figure 12-8 Filter responsc with design margin at f,.

From Egs. (12-22) to {12-24), the degree n satisfies

|log k,| log (1/k;)
"2 Tog k| _ log (1/&) (12:23)
Obviously, in almost all cases the right-hand side of Eq. (12-25) gives a fractional
(noninteger) number. Then n should be chosen as the next higher integer. Choos-
ing n higher than (12-25) means that the requirements (12-20) will be surpassed.
We can, for example, satisfy the specifications at f, exactly and obtain a safety
margin at f, (Fig. 12-8).1 Thus,

a( f,) = o a(f,) <ea, (12-26)
With this choice, from Eq. (12-19),

100420 — 1
C,=——— -
g ) (12-27)
and hence, from Eq. (12-13)
f 2n
| K[* = (10%/1° — l)(f) (12-28)

Therefore, by (12-1), the loss response is

o = 10 log [1 + (10710 — l)(—;) Zn] (12-29)

3

+ The response is usually most sensitive to element dissipation, tolerances, etc., around f,- Hence,
we normally try to obtain some design margin there.
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Example 12-3 Obtain the necessary degree n, the constant C,, and the safety margin at f,
for the low-pass filter specified in Sec. 12-1. Find the characteristic function K(s) and the
transducer function H(s). Design the circuit.

From Eqgs. (12-23) to {12-25),

k= 1}—” - L_;E ~ 0.257143
107/1% — 1 1007 — 1 .3
n> E!;gg f‘ki ~ 4736
Hence we choose n = 5. If we require {12-26) to hold, then, by (12-27),
10710 — 1 10° — 1 .
Cn = (27[];.)2" L (27{7 « 106)1’6 & 37 x 10

This extremely small number and other very small or large numbers which would occur 1n
the remainder of the calculation result from carrying out the calculations without using
normalization. To improve the situation, we choose as our frequency unit the half-power
(3-dB) radian frequency w, of the response. This frequency is given by

3 Pmnx
IH(jwo)|f =5~ =2

o P2
i |K(jwo)|* = Cowd" = |H{jwe)? — 1 =1 (12-30)
o = Oy 2n
G, =l

erefore, in terms of Q = w/w,,
| K(Q)[? = CalwoQ)*" = Q%" {12-31)

A comparison of Eqs. (12-31) and (12-13) shows that the normalization results in replacing
C, by 1. Therefore, if we use Q and § = jQ, for this specific example

|[KP=0Q" and K(§)=zS°
The natural modes are then, by Eq. (12-16), at
S, = e+ 2810 = o5 [2(0.4 + 0.2k)] + j sin [n(0.4 + 0.2k)] k=12 .., 5

Hence
5
H(S)= + [] (S = S) = £(5 + 1)(S? + 0.6180345 + 1)(8? + 1.6180345 + 1)
k=1

= i(ss * 3434 I aJSS +hr aZSZ + a;S + i)
with a; = a, = 3.23607 and a, = a; = 5.23607. If the positive sign in both K(S§)and H(S) is
chosen and impedance normalization is used so that Rg = R, = |, Eq. (6-62) gives
o He—Ke  asS'ta, 5741
UMTH 4K, 285 +a;8+4,S

with the a, given above. Developing z,, into a ladder circuit using the techniques learned in

1
A,(5)=— “All-pole” transfer function

H(s—-sk)
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(b Figure 12-9 Butterworth filters for n = 5.

Chaps. 5 and 6, the network of Fig. 12-9g results, with the normalized clement values
¢, = c5 ~ 0.618034, ¢c; = 2 and I, = I, ~ 1.618034. The reader should carry out the details
as an exercise.

Next, assume that the negative sign is chosen in K(S) so that K{(S) = —5°. Then, from
Eq. (6-65),

. H o+ K. a:S*+a; 88 +1
Y S g K, T 285 1 as8° + a8

Ladder expansion gives now the circuit of Fig. 12-9b with I, = Is = 0.618034, I = 2, and
¢, = ¢4 &~ 1618034, Clearly, the two circuits of Fig. 12-9 are duals of each other. Both are
normalized in impedance (scaled down by 50) and frequency ncrmalized to the still un-
determined 3-dB radian frequency wg. To obtain the physical element values, w, must be
found. A simple way is provided by Eqs. {12-19) and (12-26), which give

a, = 10 log {1 + (‘”) I
We

wo = w (10410 — )= 1i3n

= (217 x 108)(10% — 1)~®! =~ 1.39084 x 107 rad/s

(12-32)

Hence, the physical-element values can be obtained by multiplying the terminating
resistors by Ro = 50 €, all inductors by Lo = Ry /wo = 3.59494 yH, and all capacitors by
Co = 1/Rowo = 143798 nF. This routine task is left to the reader as an exercise.

We are also often interested in the behavior of the loss response for very
small and very large values of w. For Q < 1, by series expansion,

a = 10log (1 + ") = (10 log ¢) O*" (12-33)
while for Q > 1
a=20nlogQ (12-34)
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Table 12-3 Element values of Butterworth filters for R; =R, = 1Q and
wy = 1 rad/st

Value I, or
of n cyorly | Lyorey | eyorly| lgorcy| eyorly| lgorcg|eqyor Lllgore, | cgorly| €,
1 2.0000
2 1.4142 14142
3 1.0000 2.0000 1.0000
4 0.7654 1.8478 1.8478 0.7654
5 0.6180 1.6180 2.0000 1.6180 06180
6 0.5176 14142 1.9319 1.9319 1.4142 0.5176
7 0.4450 1.2470 1.8019 20000 18019 1.2470 0.4450
8 0.3902 11111 1.6629 1.9616 1.9616 1.6629 1111l 0.3902
9 0.3473 1.0000 1.5321 18794 2.0000 1.8794 1.5321 1.0000 0.3473
10 03129 0.9080 1.4142 1.7820 19754 19754 1.7820 14142 09080 | 03129
[I i4 ib
[ g cﬁT Cs :L;: Oy
[ SN ; e
or
l Iy Iy

c;I c;I c;l
T T T

t Reproduced by permission from L. Weinberg, “Network Analysis and Synthesis,” p. 605,
MeGraw-Hill, New York, 1962; reprinted by Robert E. Krieger Publishing Co., Inc., Huntington,
N.Y., 1975

Hence, doubling Q results in an increase of
Ao =~ 6.02n dB (12-35)

in the value of a. Therefore, on a logarithmic frequency scale, the a-vs.—log 2
curve tends asymptotically to a straight line, with a slope of 6.02n dB/octave.}

In the available literature, the normalized roots and coefficients of H(S) are
tabulated, as are the element values, for Butterworth filters. Some of these tables
are reproduced in Tables 12-1 to 12-3. Our painfully computed circuits (Fig. 12-9)
could readily have been found from Table 12-3. The calculation of n and w,,
however, is necessary even if Table 12-3 is used. As a matter of interest, it should
be noted that explicit formulas are also available’® for the element values of
Butterworth filters.

+ An pctave is the interval between two frequencies which have a ratio 1: 2.
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Figure 12-10 Filter loss response with maximally flat passband and finite loss polcs.

A minor, but useful, modification of the Butterworth response is obtained if
some (or all) of the loss poles are shifted from @ — oo to some finite frequencies
w;. This results in a rational characteristic function K(s) of the form

Polesat = jw K(s)= 3 e - = k< - (12-36)

The resulting loss response is still “maximally flat” at the frequency origin; this
can easily be verified by repeatedly differentiating the loss function

2n
PIPE 1S TN . A (12-37)

I (0f - o)

The resulting new a{w) function is illustrated in Fig. 12-10. It is evident that
the selectivity has improved, compared with the response of Fig. 12-8. The price
paid is an increase of the number of elements, since the k finite-loss poles require
tuned resonant circuits in k of the branches. Also, the previously established
design formulas and tables are not applicable to these circuits. Their design can be
performed using computer-aided techniques?® to calculate the optimum values of
the w;. These are beyond the scope of the present discussion. Only one class of this
filter type, the inverse Chebyshev filter, to be discussed later, can be designed using
straightforward analytical methods.



